

نام
نام خانوادگى
محل امضاء

صبح پنجشنبه
91／11／19

اكر دانشكّاه اصلاح شود مملكت اصلاح مىشود．
امام خمينى（ره）

> جمهورى السل大مى اليران
> وزارت علوم، تحقيقات و فنّاورى
> سـازهان سنججش آموزش كشور

ITMF آزمون ورودى دور ههاى كارشناسى ارشد نإيوسته داخل ـ سال

مهندسى صنايع（ا－ـ مديريت سيستم و بهر هورى Y－مهندسى سيستمهاى اقتصادى اجتماعى ｜F\％．

مدت ياسخخكويـ：•1A دقيقه
تعداد سؤال：•ت

تا شماره	از شماره	تعداد سؤال	مواد امتحانى	رديف
r ．	1	r 。	زبان عمومى و تخصصى	1
Δ.	r	r.	r رياضى عمومى	r
V 。	$\Delta 1$	r.	تئورى احتمال و آمار مهندسى	r
9.	V1	r ．	تحقيق در عمليات	f
11.	91	r.	اقتصاد	0
ir．	111	r ．	اصول مديريت و تئورى سازمان	9

استفاده از ماشين حساب مجاز نمىباشد．

Part A: Vocabulary
Directions: Choose the word or phrase (1), (2), (3), or (4) that best completes each sentence. Then mark the correct choice on your answer sheet.

1- He is a woman of --------- who has never abandoned his principles for the sake of making money.

1) utility
2) integrity
3) treaty
4) acrimony

2- The loud sound of the radiator as it released steam became an increasingly annoying

1) interval
2) perception
3) zenith
4) distraction

3- Jackson's poor typing skills were a --------- to finding employment at the nearby office complex.

1) hindrance
2) supplement
3) confirmation
4) versatility

4- The judge dismissed the extrancous evidence because it was not --------- to the trial.

1) obedient
2) treacherous
3) pertinent
4) vulnerable

5- Because biology is such a --------- subject, it is subdivided into separate branches for convenience of study.

1) deficient
2) consistent
3) broad
4) mutual

6- In addition, physicians may have difficulty in deciding that an illness can be \qquad the job. Many industrial diseases mimic sickness from other causes.

1) attributed to
2) precluded from
3) refrained from
4) exposed to

7- Mechanics was one of the most highly developed sciences
--------- in the Middle Ages.

1) extracted
2) persisted
3) resolved
4) pursued

8- In the absence of death from other causes, all members of a population may exist in their environment until the --------- of senescence, which will cause a decline in the ability of individuals to survive.

1) ratio
2) onset
3) core
4) output

9- Before the invention and diffusion of writing, translation was --------- and oral; persons professionally specializing in such work were called interpreters.

1) subsequent
2) unilateral
3) eventual
4) instantaneous

10-Public attitudes toward business regulation are somewhat
---------; most people resent intrusive government rules, yet they expect government to prevent businesses from defrauding or endangering them.

1) cogent
2) emotional
3) ambiguous
4) indifferent

Part B: Cloze Test

Directions: Read the following passage and decide which choice (1), (2), (3), or (4) best fits each space. Then mark the correct choice on your answer sheet.

The variety of successful dietary strategies (11) --------- by traditionally living populations provides an important perspective on the ongoing debate about how high-protein, lowcarbohydrate regimens such as the Atkins diet compare with (12) ---------- underscore complex carbohydrates and fat restriction. The fact that both these schemes produce weight loss is not surprising, (13) ---------- both help people shed pounds through the same basic mechanism: (14) ---------- major sources of calories. When you create an energy deficit -that is, when you consume fewer calories (15) --------- - your body begins burning its fat stores and you lose weight.
11-1) employed
2) are employed
3) is employed
4) then employed
12-1) those that
2) the ones they
3) that which
4) they
13-1) in fact
2) although
3) likewise
4) because
14-1) limit
2) limiting
3) which limit
4) with limiting
15-1) are expended
2) that they are expended
3) than you expend
4) to expend

Passage 1:

A long time ago, back in the "good old days," engineering was considered the art and science of making trade-offs. In many respects, it still is, but the pressures of the present-day marketplace are so persistent and so relentless, that it is often hard for us to appreciate that we can make trade-offs, It used to be said, with conviction, that of quality, schedule, and price, the customer could have any two, but not all three. Today, however, customers want all three; and if they cannot get them from one source, there is always someone else willing to promise them.

To compete in this marketplace, we need all the tools, knowledge, and resources we can obtain and learn to use effectively. In this section, Design of Experiments (DoE) and reliability engineering are recommended as effective tools for meeting today's market challenges. While each is effective in its own right, they are quite formidable when combined.

Design of Experiments (DoE) and reliability are different types of subjects. DoE is a means of obtaining and organizing knowledge, while reliability is a feature of a product. They are alike, however, in that they are applicable across the entire range of the product design, development, and use cycle. They are also alike in that they are most effective when used as tools by professionals in disciplines not usually associated with them, such as design engineering, process engineering, and even marketing and product procurement. Reliability is best assured when it is designed into the product by the design engineer, and built into the product by production personnel, rather than calculated externally by reliability professional. Likewise, DoE is best applied to a product design by the product engineer or to the production process by those responsible for production, rather than by a statistician whose career goal is to conduct experiments. These very useful methods are best assimilated if one takes a long, wide, and skeptical view of them. That is, the one who learns best is one who maintains a healthy innocence about a subject, who never forgets what is known from other sources, who never lets go of common sense, and who never forgets basic questions such as: What can go wrong?
How will we know it went wrong? What will we do if it does go wrong? . How can we prevent its going wrong or mitigating its effects?
16- What is the main difference between DoE and reliability?

1) The main difference is about the disciplines in which they could be effective.
2) Reliability is more important than DoE in product design.
3) Reliability is a measure but DoE is a methodology.
4) Reliability is considered by engineers whereas DoE IS conducted by statisticians.

17- The first paragraph tells us that

1) a Long time ago, engineers tried to collect whatever customers want into a single product
2) todays, customers seek several quality characteristic from individual sources
3) balancing conflict features in a product does not help in today's markets
4) nowadays, the market requirements enforce manufacturer to release a set of products which meets customer's needs
18- The synonym of "Design" in "Design of Experiments" is
--------- .
5) purpose
6) theme
7) plan
8) decide

19- It can be inferred from the last paragraph of the passage that

1) DoE and reliability engineering are different in scope and application areas
2) Jomt consideration of reliability and DoE would always lead mto the best results
3) They are alike in assumption about the processes, input data and analysis methods, and the decisions could be made from their results
4) Bask and deep understating about the subject and the problem would increase the plicability and the effectiveness of considering reliability requirements and DoE simultaneously
20- The term "those" in the $10^{\text {th }}$ line of the last paragraph is referred to --------- .
5) Vender
6) Manufacturer
7) Customer
8) Product engineer

Directions: Choose the best choice (1), (2), (3), or (4) that best completes the sentence. Then mark it on your answer sheet.

21- The emotionally unstable person is always potentially a dangerous criminal, who causes untold misery to other persons and is a source of considerable \qquad and annoyance to law enforcement official.

1) trouble
2) fortitude
3) alleviation
4) gratitude

22- Given a clear knowledge of what is expected of him, the subordinate requires in addition the definite assurance that he will have the \qquad of his superiors so long as his actions are consistent with established policies and are taken within the limits of his responsibility.

1) audacity
2) authority
3) support
4) independence

23- A supervisor must his trust in people with a certain shrewdness that places him on guard against those not worthy of complete confidence.

1) balance
2) justify
3) show
4) understand

24- When supervisors and subordinates trust each other, employee grievances rarely occur, and when they do appear, remedies are \qquad found.

1) seldom
2) easily
3) outrageously
4) conscientiously

25- Supervisors should be trained to \qquad patterns of performance that are signs of trouble and to prepare for that trouble well in advance of the time when it is necessary to make a disciplinary decision.

1) require
2) eliminate
3) disparage
4) recognize

26- It is generally accepted that \qquad a supervisor is at least as well informed about the work of his unit as are his subordinates he will fail to win their approval, which is essential to him if he is to supervise the unit effectively.

1) unessential
2) doubtfully
3) unless
4) unfortunately

27- Some demands of employees will, if satisfied, result in a decrease in production. Some supervisors largely ignore such demands on the part of their subordinates and, instead, concentrate on the direction and production of work; others yield to such requests and thereby \qquad the production goals.

1) value
2) neglect
3) attain
4) increase

28- The criticism that supervisors are discriminatory in their treatment of subordinates is to some extent. \qquad for the subjective nature of many supervisory decisions makes it probable that many employes who have not progressed will attribute their lack of success to supervisory favoritism.

1) unavoidable
2) favorable
3) unavailable
4) knowledgeable

29- No training course can operate to full advantage without job descriptions, which indicate training requirements so that those parts of the job requiring the most training can be carefully analyzed before the training course is

1) improved
2) predicted
3) met
4) started

30- The appraisal of the value of the employees in an organization is fundamental not only as a guide to the administration of salary schedules, promotion, demotion, and transfer, but also as a means of keeping the working force on its toes and of checking the of selection methods.

1) initiation
2) redundancy
3) recommendation
4) effectiveness

رياضى عمومى (ا و 「)
ات - مقدار $\int_{0}^{1} e^{\sqrt{1-x}} d x$ كدام است؟

$$
\begin{array}{ll}
r e-1(r & 1(1) \\
r\left(\frac{1}{\mathrm{e}}-1\right)(r & r(r
\end{array}
$$

فرض كنيد مىدهند. در اين صورت مقدار كدام يكى از عبارتهاى زير، با بقيه فرق دارد؟

ظرفى به شكل نيمكره با شعاع f 1 سانتىمتر را روى زمين قرار داده و درون آن تا ارتفاع 「
ايم. حجم آب داخل ظرف كدام است؟

$$
\begin{array}{lr}
1 \wedge \pi(Y & 9 \pi() \\
94 \pi(Y & r \vee \pi(r
\end{array}
$$

$$
\alpha=r \quad \beta=\frac{1}{r}\left(r \quad \alpha=\frac{1}{r} \beta=\frac{1}{r}()\right.
$$

$$
\alpha=r \quad \beta=-\frac{1}{r}\left(r \quad \alpha=\frac{1}{r} \beta=-\frac{r}{r}\right. \text { (r }
$$

६ץ- حاصل

$$
\begin{array}{ll}
\mathrm{e}^{-r}(r & \mathrm{e}^{-\xi}() \\
\mathrm{e}^{-1}(\gamma & \mathrm{e}^{-r}(r
\end{array}
$$

$$
\begin{aligned}
& z_{1}^{r}+z_{Y}^{r}+z_{r}^{r}+z_{Y}^{r}(r \\
& z_{1}^{\psi}+z_{Y}^{\psi}+z_{Y}^{\psi}+z_{Y}^{\psi}(1 \\
& z_{1}^{r}+z_{r}^{r}+z_{\mu}^{r}+Z_{\mu}^{\mu}\left(\varphi \quad Z_{1}+Z_{\mu}+Z_{\mu}+Z_{\mu}(r\right.
\end{aligned}
$$

در ميان تمام مستطيلهاي محيط بر مستطيلى مفروض با اضلاع Y و F، مقدار ماكزيمم مساحت كدام است؟

$$
\begin{aligned}
& \frac{r i \pi}{r q}+\frac{1}{i r} \ln \frac{r}{r}(r \\
& \frac{r v \pi}{1 r}+\frac{1}{i r} \ln \frac{r}{r}(r
\end{aligned}
$$

$$
\frac{1 r \pi}{r r}+\frac{1}{r 1} \ln \frac{r}{r}(1
$$

$$
\frac{1 r \pi}{r 1}+\frac{1}{r 1} \ln \frac{r}{r}(r
$$

$$
1001 \mathrm{r}
$$

فرض كنيد $f(x)=\int_{0}^{\frac{1}{x}} \sin \left(x^{Y} t\right) d t$ باشد، مقدار $f^{\prime}(\pi)$ كدام است؟

$$
\begin{aligned}
& \frac{r}{\pi^{r}}(r \\
& \frac{r}{\pi^{r}}(千
\end{aligned}
$$

$$
-\frac{r}{\pi^{r}}(1
$$

$$
-\frac{\digamma}{\pi^{r}}(r
$$

$$
\begin{array}{ll}
r \mathrm{~V}+\frac{9 \pi}{r}<r & V+r \pi(1 \\
V+r \pi(r & r V+\frac{\gamma \pi}{r}(r
\end{array}
$$

كدام يك از بردار هاى زير، بر منحنى فصل مشترك دو رويــٔ ($1, \pi, 1$ (

$$
\begin{array}{ll}
(1,-r, r) & (r \\
(1, r, r)(r & (-1, r, r)(1 \\
(1, r,-r)(r
\end{array}
$$

$$
\begin{array}{ll}
\mathrm{a}^{r}(r \pi-1)(r & r a^{r}(\pi-1)(1 \\
r a^{r}(\pi-r)(\gamma & r a^{r}(\pi-1)(r
\end{array}
$$

مقــدار

$$
\begin{aligned}
& \frac{f \pi}{r}(r \\
& \frac{r \pi}{10}(f
\end{aligned}
$$

$$
\frac{r \pi}{\Delta}(1
$$

$$
\frac{4 \pi}{10}(r
$$

 مثلثاتى مىباشد، كدام است؟

$$
\begin{array}{ll}
\frac{\pi}{\mu}(r & \frac{\pi}{\lambda}(1 \\
r \pi<\varphi & \circ(r
\end{array}
$$

 $\int_{0}^{1} \int_{r-y}^{1-\sqrt{1-y^{r}}} f(x, y) d x d y(r$
$\int_{0}^{1} \int_{\Gamma-y}^{1+\sqrt{1-y^{r}}} \mathrm{f}(\mathrm{x}, \mathrm{y}) \mathrm{dxdy}(1$
$\int_{0}^{r} \int_{r-y}^{1-\sqrt{1-y^{r}}} f(x, y) d x d y(\digamma$
$\int_{0}^{T} \int_{r-y}^{1+\sqrt{1-y^{r}}} \mathrm{f}(\mathrm{x}, \mathrm{y}) \mathrm{dxdy}(r$

$$
\begin{aligned}
& \text { ir (r } \\
& \frac{\Delta F}{F}(1 \\
& \frac{\Delta V}{f}(f \\
& \frac{\Delta q}{F}(r
\end{aligned}
$$

مقدار $I=\int_{0}^{+\infty} \frac{e^{-r x}-e^{-\xi x}}{x} d x$
$\ln \frac{1}{r}(r$
$\ln r_{(Y}$
$\ln \frac{1}{r}(1$
$\ln \mu(\mu$

فرض كنيد S كرهاى به شعاع R حول مبدأ مختصات باشد. در اين صــورت انتكــرالهــاى ناســره I و I بـه تر تيـب و

$$
\begin{aligned}
& I=\iiint_{S-\{(0,0,0)\}} \frac{d x d y d z}{\sqrt{\left(x^{r}+y^{r}+z^{r}\right)^{r}} \ln \sqrt[r]{x^{r}+y^{r}+z^{r}}} \quad, J=\iiint_{S-\{(0,0,0)\}} \frac{\ln \sqrt{x^{r}+y^{r}+z^{r}}}{x^{r}+y^{r}+z^{r}} d x d y d z
\end{aligned}
$$

تئورى احتمال و آمار مهندسى
جعبهاى شامل f مهره́ سفيد و ^ م مهره́ سياه است. ه م مهره به تصادف و بدون جايگَذارى از اين جعبه انتخاب و بدون نگاه كردن به رنكَ مهر.هها كنار كذاشته مىشود. اكر يك مهره مجدداً از اين جعبه انتخاب شود، احتمال اين كه مهرة انتغابى سفيد باشد كدام است؟

$$
\begin{array}{cc}
\frac{1}{r}(r & \frac{1}{\Delta}() \\
\frac{r r}{99}(r & \frac{r v}{99}(r
\end{array}
$$

 با ميانگين يكى است. مقدار P(x =)

$$
\begin{array}{ll}
\left(\frac{1}{r}\right)^{n}(r & \left(\frac{1}{r}\right)^{n+1}() \\
\frac{e^{-\lambda} \lambda^{n}}{n!}(r & \frac{e^{-\lambda}\left(\frac{\lambda}{r}\right)^{n}}{n!}(r)
\end{array}
$$

دو نوع مشترى به فروشگًاهى مراجعه مى كنند. ورود هر دو نوع مشترى براساس فرايندهاى يواسون، به ترتيب بـي با ميانكين نرخ
وقوع ه و و 1 ا نفر در ساعت است. احتمال اينكه ينجمين مشترى نوع ا قبل از دومين مشترى نوع 「 وارد شود، پقدر است؟

$$
\begin{array}{ll}
\frac{\Delta}{r^{\Delta}}<r & \frac{f}{r^{9}}(1 \\
\frac{1 r}{r^{\varphi}}<\varphi & \frac{19}{r^{9}}<r
\end{array}
$$

اكر متغير تصادفى X داراى تابع مولد كشتاور ${ }^{\text {ت }}$

$$
\begin{array}{rr}
n(\mathrm{n}+r)(r & \mathrm{n}(\mathrm{n}+1)() \\
r \mathrm{n}(\mathrm{n}+1)(\digamma & r n(\mathrm{n}+Y)(r
\end{array}
$$

ova (T
0 ro (1
liva (f
$1, \Gamma \Delta(\Gamma$

اكر x و y متغير هاى تصادفى ييوسته با توزيع احتمال مشترك زير باشند:

$$
\mathbf{f}(\mathbf{x}, \mathbf{y})= \begin{cases}r & 0<x<y<1 \\ 0 & 0 \\ 0 & \text { غير اينصو }\end{cases}
$$

تابع چگَالى احتمال شرطى Y براى X = X وقتى X X \gg ب باشد، كدام است؟

$$
\frac{1}{y}, 0<y<1\left(r \quad \frac{1}{1-y}, 0<y<1(1)\right.
$$

$$
\frac{1}{1-x}, x<y<1\left(\psi \quad \frac{1}{1-y}, x<y<1<\psi\right.
$$

 ك $\mathrm{Z} \geq 0$

$$
\begin{array}{lc}
\frac{\mu^{r} \mathrm{e}^{-\lambda \mu \mathrm{z}}}{\lambda+\mu}(r & \frac{\mu|\lambda-\mu| \mathrm{e}^{-|\lambda-\mu| \mathrm{z}}}{\lambda+\mu}() \\
\frac{\mu}{\lambda+\mu} \mathrm{e}^{-\mathrm{Z}}(\uparrow & \frac{\lambda \mu \mathrm{e}^{-\lambda \mathrm{z}}}{\lambda+\mu}(r)
\end{array}
$$

دو بازيكن فوتبال به صورت نوبتى و مستقل تويى را به سمت هدفى شوت مىكنند. احتمال برخورد توپ به هدف براى بازيكن اوَل براى $\frac{1}{\text { و }}$ براى بازيكن دوم برخورد كنند. اگر بازى با شوت بازيكن اول آغاز شود و N تعداد شوتهاى بازيكن اول به سمت هدف باشد، E(N) كدام است؟

$$
\begin{array}{ll}
\varphi(r & \Delta() \\
\frac{r r}{r}(f & \frac{r 0}{r}(r
\end{array}
$$

$$
\begin{array}{rr}
\sigma_{\mathrm{x}}^{r} \sigma_{\mathrm{Y}}^{r}(r & \sigma_{\mathrm{x}}^{r} \sigma_{\mathrm{Y}}^{r}+\mu_{\mathrm{x}}^{r} \sigma_{\mathrm{Y}}^{r}+\mu_{\mathrm{Y}}^{r} \sigma_{\mathrm{x}}^{r}() \\
\sigma_{\mathrm{x}}^{r} \sigma_{\mathrm{Y}}^{r}+\mu_{\mathrm{x}}^{r} \sigma_{\mathrm{Y}}^{r}+\operatorname{Cov}(\mathrm{x}, \mathrm{Y})(\boldsymbol{f} & \sigma_{\mathrm{X}}^{r} \sigma_{\mathrm{Y}}^{r}-\mu_{\mathrm{x}}^{r} \mu_{\mathrm{Y}}^{r}+\operatorname{Cov}(\mathrm{x}, \mathrm{Y})(r
\end{array}
$$

طول يك رشته نخ كه بدون ياره شدن كشيده شود، يكى متغير تصادفى نمايى با ميانگين D 000 متر است. احتمال اين كه طول
متوسط 100 رشته نخ بين FVA و و وه

$$
\begin{aligned}
& 0, \text { rond (r } \\
& 0, \text { DFRA (F }
\end{aligned}
$$

$$
0, r r \Delta r(1)
$$

$$
\text { o/ } \operatorname{ADTK} \text { (T }
$$

 r نفر متحمل تأثير بر حاصل از تزر آيق شوند، كدام است؟

$$
\begin{array}{ll}
\frac{r r}{r} \mathrm{e}^{-\Delta}(r & \frac{I r}{r} \mathrm{e}^{-\Delta}() \\
\frac{r v}{r} \mathrm{e}^{-\Delta}(\varphi & \frac{r}{r} \mathrm{e}^{-\Delta}(r
\end{array}
$$

 $\begin{array}{ll}\mu(r & \frac{11}{9}() \\ 9(f & \frac{r \Delta}{q}(r\end{array}$

$$
\begin{aligned}
& \mathbf{p}(\mathbf{x})=\left\{\begin{array}{cll}
\theta & , & \mathbf{x}=1 \\
\theta & , & \mathbf{x}=r \\
1-r \theta & , & \mathbf{x}=r
\end{array}\right. \\
& \text { كه در آن } \\
& \frac{1}{r} \overline{\mathrm{x}}(r \quad \overline{\mathrm{x}}(1 \\
& 1-\frac{\bar{x}}{r}\left(f \quad \frac{\bar{x}-1}{f}\right. \text { (r }
\end{aligned}
$$

$$
\begin{aligned}
& \text { باشد، واريانس متغير تصادفى } \operatorname{Cov}\left(\mathbf{x}_{i}, x_{j}\right)=\frac{1}{Y 千} \\
& \frac{r}{i r}\left(r \quad \frac{r}{i r}(1\right. \\
& \frac{\Delta}{1 r}\left(F \quad \frac{Y}{1 r}(r\right.
\end{aligned}
$$

اتر

$$
f(\mathbf{x})= \begin{cases}\frac{\alpha r^{\alpha}}{\mathbf{x}^{\alpha+1}}, & x>0 \\ 0 & \text { در غير اينصورت }\end{cases}
$$

كه در آن $\alpha>0$ است. برآورد حداكثر احتمال براى MLE) $\boldsymbol{~ ا س د ~}$

$$
\begin{array}{cc}
\operatorname{Max}\left(x_{1}, \ldots, x_{n}\right)(r & \frac{n}{\sum_{i=1}^{n} \ln x_{i}}(1 \\
\frac{n}{\sum_{i=1}^{n} \ln x_{i}-n \ln r}(r & \operatorname{Min}\left(x_{1}, \ldots, x_{n}\right)(r
\end{array}
$$

دو شركت X X و توليد كننده يك نوع داروى مسكن هستند. شركت X مدعى است سرعت جذب داروهاى ايـنـ شــركت دو

$$
\begin{aligned}
& \text { صورت } \\
& \sqrt{r}{ }^{(r} \\
& 11 \\
& \Delta \sqrt{r}(f
\end{aligned}
$$

دو متغير تصادفى و مستقل اند. نمونههاى تصادفى r تايى از هر متغير تصادفى ترفته شده و
 درصد پذيرفته شده است، مقدار P-value براى اين آزمون حقدر است؟

$$
\begin{array}{ll}
\frac{1}{r}(r & \frac{1}{r}(1 \\
\frac{r}{r}(r & \frac{1}{q}(r
\end{array}
$$

فرض كنيد مى خواهيم فرضئ \quad-v. اكر محدوديت منابع داشته باشيهم به طورى كه مجموع دو اندازه برابر با آزمون حاصل داراى بيشترين توان باشد؟

$$
\begin{array}{cc}
\mathrm{N}\left(\frac{\sigma_{1}}{\sigma_{1}+\sigma_{r}}\right)(r & \mathrm{N}\left(\frac{\sigma_{r}}{\sigma_{1}+\sigma_{r}}\right)(1 \\
\mathrm{N} \frac{\sigma_{1}}{\sigma_{r}}(r & \mathrm{N} \frac{\sigma_{r}}{\sigma_{1}}(r
\end{array}
$$

نقشهٔ بخشى از خيابانهاى شهر تهران به صورت زير است، كه در آن رئوس، ميادين شهر بوده و خطوط بيــانگر خيابــانهـــاى
 يوشش دهيم. با توجه به مدل برنامهر يزى رياضى اين مسئلهُ جوارين جواب بهينه كدام است؟

$$
\begin{array}{ll}
\frac{1}{r} x_{v}-\frac{1}{r} x_{1}-x_{r}-\frac{1}{r} x_{\Delta} \leq 0(r & \frac{1}{r} x_{V}-x_{1}-\frac{1}{r} x_{r}-\frac{1}{r} x_{\Delta} \leq 0() \\
\frac{1}{r} x_{V}-\frac{1}{r} x_{1}-\frac{1}{r} x_{r}-x_{\Delta} \leq 0(r & x_{V}-\frac{1}{r} x_{1}-\frac{1}{r} x_{r}-\frac{1}{r} x_{\Delta} \leq 0(r
\end{array}
$$

در يكى مسئلهٔ برنامهريزى خطى در فرم استاندارد، متغير Xi باشد، در دستكاه محدوديتهاى زير، حند متغير تهى مو جود است؟

در دستگاه محدوديتهاى سؤال VY، تعداد جوابهاى چايهُ قابل قبول، كدام است؟

$r(r$	$1(1)$
$F(F$	$r(r$

در دستگاه محدوديتهاى سؤال Yץ، چند جواب تباهيده در بين جوابهأى پايهُ قابل قبول، مو جود است؟

$$
\begin{aligned}
& 1(r \\
& \text { - (1 } \\
& \text { (} \uparrow \\
& r(r
\end{aligned}
$$

فرض كنيد ماتريس يايه در مرحلهاى از روش سيمیلكس به صورت زير است.

$$
\left[\begin{array}{ccc}
-1 & 1 & 1 \\
r & -r & -1 \\
1 & 0 & -1
\end{array}\right]
$$

* با توجه به اطلاعات زير، به سؤالهاى VY تا VQ

محدوديت اضافى به حساب آيد. در دستگاه محدوديتهای خاى زير چند متغير قابل حذف وجود دارد: $\left\{\begin{array}{c}x_{1}+x_{r}+r x_{r}+x_{r}+x_{\Delta}=q \\ r x_{r}+x_{r}+\Delta x_{r}+f x_{\Delta}=f \\ x_{1}+x_{r}-x_{r}+r x_{\varphi}+r x_{\Delta}=r \\ x_{1}, x_{r}, x_{r}, x_{r}, x_{\Delta} \geq 0\end{array}\right.$
 $r(r$
در دستگاه محدوديتهاى سؤال VV، تعداد جوابهاى پائُ قابل قبول، كدام است؟ $1(r$

10 (f
$4(r$
در دستكاه محدوديتهاى سؤال VV، حند جواب تباهيده در بين جوابهاى پاية́ قابل قبول، وجود دارد؟ $1(Y$

- (1
(F) همهٔ جوابهاى پائه قابل قبول
فرض كنيد كه مى خواهيم تابع هدف زير را بر حسب محدوديتهاى سؤال VV ماكزيمم كنيم:
$\boldsymbol{\operatorname { M a x z }}=\mathbf{x}_{1}+\mathbf{x}_{\varphi}+\mathbf{x}_{\mu}+\mathbf{x}_{\boldsymbol{\varphi}}+\mathbf{x}_{\Delta}$
حداكثر مقدار Z، برابر كدام است؟
$Y / V Y(Y$
$q(Y$ F/A) (1)
$\Delta(r$
اكر از روش دو فاز برنامهريزى خطى براى حل مسئلهاى با محدوديت اضافى (Redundant) استفاده شود، در انتهـاى فــاز 1

Y

 بهينهُ مسئله اصلى چحه مىتوتوان كَفت؟ (Y) حتماً جواب موجه ندارد.
(Y) میتواند يا بيكران بوده و يا جواب موجه نداشته باشد

فرض كنيد در مراحل حل يكـ مسئلهُ برنامهريزى خطى، جواب هايهٔ قابل قبول فعلى تباهيده باشد. بــردار ضــرايب

 1) جواب پائه قابل قبول بعدى همر تباهيده است، و مقدار تابع هدف مسئله بهبود نمى يابيد「〒

آيا مىتوان از روش سيمیلكس تجديد نظر شدهٔ يكى جواب پايءٔ قابل قبول براى سيستم معادلات زير پيدا كرد؟
$\left\{\begin{array}{l}x_{1}+r x_{r}-x_{r}+x_{q}=r \\ r x_{1}+r x_{r}+x_{r}+r x_{r}=r \\ x_{1}+r x_{r}+r x_{r}+x_{r}=q \\ x_{1}, x_{r}, x_{r}, x_{\varphi} \geq 0\end{array}\right.$
() بلى مىتوان، چون محدوديتهاى مسئله همه به شكل تساوى است و متغير هاى مصنوعى نداريه. Y) بلى مىتوان، فاز 1 (ا تشكيل داد و از روش مزبور حل مى كنيم.
 \& (Y) خير نمىتوان، چون تابع هدفى در اين مسئله تعريف نشده است.

حداقل هزينهٔ ارسال يكى واحد كالا از منبع (S 2) 2 (S 1) به مشترى D 1) با اين شرط كه هايهٔ بهينه تغيير نكند، جيست؟

$\Delta(r$	$r(1)$
$F(Y$	$Y(r$

$$
\begin{aligned}
& \alpha \leq r 000 \text { (r } \quad-r 000 \leq \alpha \leq 0000 \text { (1 } \\
& -r \omega \circ \circ \leq \alpha \leq 100 \circ \text { (} \uparrow \\
& -1000 \leq \alpha \leq 000 \text { (} \\
& \text { دامنٔه تغييرات C11 با اين شرط كه پايؤ بهينه تغيير نكند، حيست؟ -AV } \\
& r \leq C_{11} \leq \wedge \quad(r \\
& 3 \leq \mathrm{C}_{11} \leq 7 \\
& 1 \leq \mathrm{C}_{11} \leq 6 \text { (} \uparrow \\
& 5 \leq \mathrm{C}_{11} \leq 10
\end{aligned}
$$

در يك مدل برنامهريزى خطى، تصميمگيرنده اصرار دارد كه رابطdٔ زير بايستى مابين دو متغير تعريف شده براى

به مبدأ خود كاهش داشته باشد. اين محدوديت را به چه صورت مى توان درمدل منظور نمود؟

$$
\begin{array}{rll}
\alpha x_{i}-x_{j} & =\alpha l_{i}-l_{j}(r & x_{i}-\alpha x_{j}=\alpha l_{i}-l_{j}() \\
x_{i}+x_{j} & =\alpha l_{i}+l_{j}(千 & x_{i}+\alpha x_{j}=l_{i}+\alpha l_{j}(r
\end{array}
$$

در مسئلهٔ برنامهريزى خطى زير، متغير هاى XY معكوس ماتريس پايه
$\operatorname{Min} z=-r x_{1}+r x_{r}$
St :

$$
\begin{align*}
& r x_{1}-x_{r} \leq r \\
& \mathbf{a} x_{1} \quad \leq r \\
& \mathbf{x}_{1}, x_{r} \geq 0
\end{align*}
$$

. تمام (r
براى جه مقاديرى از左. تمام

1) تمام (r) تمام

اقتصاد عمومى ا و r

$$
\begin{aligned}
& \mathbf{y}=\mathbf{C}+\mathbf{I}+\mathbf{X}-\mathbf{M} \\
& \mathbf{C}=\Lambda \circ+\circ, q \mathbf{y} \\
& \mathbf{I}=19 \circ \\
& \mathbf{x}=1 \Lambda \circ \\
& \mathbf{M}=r \circ+\circ, \mathbf{y}
\end{aligned}
$$

سطح تعادل در آمد ملى (y) و ضر يب فزايندهٔ تجارت خارجى (MF) آن به ترتيب، كدام است؟

$$
\begin{aligned}
& y_{\mathrm{e}}=\mathrm{v} \circ \mathrm{O}, \mathrm{MF}=1,9\left(r \quad \mathrm{y}_{\mathrm{e}}=100, \mathrm{MF}=\mathrm{r}(1\right.
\end{aligned}
$$

 ميليارد و یس انداز ملى برابر با 1 ال ميليارد باشد، ميزان سرمايهگذارى اين جامعه در وضعيت تعادل، برابر چنـد ميليارد است؟ $10(\mathrm{r}$

Ir (1 rrer rer
 ($\mathbf{G}=\Delta \circ$, Income = V C
(S به (S e برتيب، كدام است؟

$$
\begin{array}{r}
\mathrm{y}_{\mathrm{e}}=r \varepsilon \circ, C_{\mathrm{e}}=1 \mathrm{vg}, \mathrm{~S}_{\mathrm{e}}=\lambda \mu(r \\
\mathrm{y}_{\mathrm{e}}=r q / \Delta, C_{\mathrm{e}}=r r v / \Delta, S_{e}=1 r \Delta(4
\end{array}
$$

$$
y_{e}=r \circ 0, C_{e}=1 \wedge \Delta, S_{e}=90(1)
$$

$$
y_{e}=r r \Delta, C_{e}=r 00, S_{e}=100(r
$$

Y

(Y) كاهش تقاضاى مصرف جار جامعه مىشود.

در حالتى منحنى IS افتى

اكَر يك سياست مالى انقباضى به همراه يكى سياست پولى انبساطى اعمال شال شود:

 ¢
 () ا) اثر تزاحم ٪ (يك سياست مالى انبساطى:

 يك اقتصاد در شرايط وام نقدينگى Liquidity - Trap قرار دارد، كه:

تعادل بازار قيمت و مقدار كالاى x، كدام است؟

$$
\begin{array}{r}
P_{x}^{*}=\frac{9}{11}, Q_{x}^{*}=\frac{1 r \circ}{11}(r \\
P_{x}^{*}=r, Q_{x}^{*}=0,0 \circ \circ(r
\end{array}
$$

$$
\text { فرض كنيد كه تابع تقاضا براى كالاى x به صورت x= } \frac{\wedge}{\mathbf{x}} \text { باشد، در اين صورت مىتوان كفت: }
$$

() كشش قيمتى تقاضا براى كالاى X در طول منحنى تقاضا، كاهنده است.
r (Y) كشش قيمتى تقاضا براى كالاى X در طول منحنى تقاضا، فزا آينده است.

$$
\text { r) كشش قيمتى تقاضا براى كالاى X، برابر } \frac{1}{\text { است. }}
$$

f (f) كشش قيمتى تقاضا براى كالاى X در طول منحنى تقاضا، همواره ثابت بوده و برابر يكى است. شخصى كه مجموعةٔ مصر فش از دو نوع كالای او در حال حاضر قيمت هر واحد كالاى 1 و و

> تعادل در يكـ شركت انحصارى (Monopoly) جايى اتفاق مىافتد كه:
> $\mathrm{P}=\mathrm{MC}(\mathrm{Y}$
> $M C=M R(1$
> $\mathrm{P}=\mathrm{MR}(\Gamma$

-1.9

$x=r \Delta, y=\Delta \circ$ ($r \quad x=\Delta \circ, y=r \Delta$ (
$x=r \circ, y=r \circ(r \quad x=1 \circ, y=10(r$

() ميل نهايىى به مصرف، برابر ميل متوسط به مصرف مصف است.

اتكر ${ }^{\text {ات }}$

() مصرف X و X و ا افزايش دهد.
 در نمودار زير، كشش قميتى عرضه در قيمت PI ، ، برابر كدام است؟
$\mathrm{OQ}_{1} / \mathrm{OF}(1$
OF/OQ, (r
$\mathrm{FQ}_{1} / \mathrm{OF}_{(}{ }^{(}$
$\mathrm{FQ}_{1} / \mathrm{OQ}_{1}{ }^{(4}$

بنكَاهى از دو نوع نهاده استفاده و يكى نوع ستانده توليد مىكند. تابع توليد اين بنكاه به صـورت $y=\sqrt{\Delta x_{1}+V X_{Y}}$ اســت. بنگّاه هه تركيبى از نهادهها را در قيمتهاى

$$
\begin{array}{ll}
x_{r}=10, x_{1}=9(r & x_{r}=\frac{100}{r}, x_{1}=0(1) \\
x_{r}=0, x_{1}=r 0(r & x_{r}=10, x_{1}=1 r(r
\end{array}
$$

اصول مديريت و تئورى سازمان

يكى سازمان واحد را الز ميان بردارد بارد؟
(
(Y (Y) تجزيهى شركت سيستمهمایى غير خطى
 كدام انتقاد به نظريهى سيستى إي
(1) در مقابل هر اصل، مىتوان اصل مت متقابلى را مان مطرح كرد.

- Ilr
(1) مطالعات روشنايى اليى

ب) مطالعات اتاق نصب

(Staffing) تأيمن و تججيز منابع انسانى (r)
() ا) برنامهريزى (Planning)

(Y) (Organizing) سازماندهي (P) (
 هدف تمركز مىيكند؟

عدم تغيير رابطه بين وظايف، فعاليتها و اهداف، مشكل كدام است؟
(Job rotation) جرخش شغ (Y) (Y)
(f) غنى كردن كار گروهى (Work-group enrichment)
(1) توسعهٔ شغل (Job enlargement) (Y) غنى كردن شغل (Job enrichment)

طبق نظر هر سى وبلانحِارد، كدام مورد جزء مهارت اهـاى انسانى مديران است؟

طبق نظرئ كلاسيك در مباحث فر آيند سازماندهى رسمى، كدام مورد، جزء تركيب افقى (مرتبطسازى سلسله مراتب) است؟
!) تقسيمه كار (Y روابط صف استاد (Y) تخصص وظيفهاى وحدت فرماندهى

تعريف زير معادل كدام وازه است؟
" "راهنما و حدودى كه تصميم آتى، در محدودهى آن اتخاذ مىشوده

كدام مورد جزء نظريات محتوايى در بحث انگُيزش نميباشدٌ

در مديريت سيستمى، كدام كزينه دليل اصلى شكست سيستمهاى مادى بسته است؟ (Y)
(r) آنترويى منفى (Negative Entropy) () آنترويى (Entropy)
(f) هُ أفم افزايى منفى (Negative synergy)

كدام كزينه نشان دهنده خصوصيات سازمانهاى نوع Zاست؟

(Y ($ا$ (تصميمگيرى مشاركتى، كنترل تلويحى و مسئوليت فردى

است \qquad
 (1) منفى

> نمايد، كدام است؟
 انتظار براى نتيجهاى كه تحقق خواهد
r (Y) نظرئ نياز هاى اكتسابى f (Y) هيج كدام
(Y) نظريه نيازهاى اكتسابى

1) نظّرئ تعيبين هدف

٪) نظريه رشد يافتگى - رشد نيافتتى

$$
\begin{aligned}
& \text { 1) نظريهى سلسله مر اتب نيازهانا }
\end{aligned}
$$

در سازمان ماتريسى (Matrix Organization) كه تركيبى از قسمتبندى سازمانى برحـسب محـصول و وظيفــه در يــى
ساختار معين است، كزينهى صحيح، كدام استْ
()) در واقع همان قسمتبندى سازمانى برانى رحسب پرورْه است.
(T) هركسى فقط وظايف خاص خود را انجام ميدهد.

 ٪) داستان سازی (٪) طوفان مغزى

Tr (r) ساختار وظيفه، قدرت مقام، روابط سطوح مديريت (Y) روابط سطوح مديريت، ساختار سازمان، قدرت مدير
(1) تلفيق نامتجانسها

براساس نظريهى فيدلر، متغير هاى مهمر كدام است؟
$-1 r$.

1) قدرت مقام، روابط رهبر - پيريرو، ساختار سازمان

٪) روابط رهبر - ييرو، ساختار وظيفه، قدرت مقام

